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Abstrad-The effects of matrix cracking and debonding which occur in ceramic-matrix composites
are described by a micromechanical model. The cracking and debonding processes induce loss of
stiffness, inelastic strains, hysteresis loops and crack closure, These features are analysed within the
framework of Continuum Mechanics by the introduction of internal variables identified in the
micromechanical analysis, Tbe evolution laws of the internal variables can be determined by
combining the experimentaldala with IIliaomecbanical modftiJIg. The inftuences of residual stress
fields due to processiag are also indwIeC. Comparisons are made bet)lo'een theoretical predictions
and the results of experiments performed on layered materials.

1, INTRODUCTION

It is known that the formation of matrix cracks and the subsequent matrix-fiber interface
sliding are the source of the nonlinear stress-strain curves observed when loading con­
tinuous fibers as well as ceramic-matrix composites. Matrix cracking and debonding reduce
the secant Young's modulus E, anfJ induce inelastic strains upon complete unloading, Ilin,

and hysteresis loops, c51l (Beyerley et al., 1992; Pryce and Smith, 1992),
In this paper, the effects of matrix cracking and interface sliding are studied within the

framework ofContinuum Damage Mechanics. Constitutive laws are derived by introducing
internal variables which are identified in a micromechanical description of matrix cracking
and debonding. The effects of residual stresses introduced during processing are also
included, The growth laws for the internal state variables in terms of the associated
forces are determined from experiments which involve unloading-reloading sequences. The
procedures developed in the study are used to define a model which describes the tensile
behavior of a layered laminate made of alternating layers of alumina and unidirectional
carbon/epoxy prepreg tapes.

2. CONTINUUM MECHANICS FORMULATION

In this section, a Continuum Mechanics formulation (Germain, 1973; Lemaitre and
Chaboche, 1985) is attempted usin, the framework of the thennodynamics of irreversible
processes (Bataille and Kestin, 1919; Gepnain et aI., 1983), The first step in establishing
such a model is to identify the internal state variables which define the condition of the
material. The second is to detennine the expression of the state potential in tenns of the
state variables and the third to define the evolution laws of the internal variables.

2.1. Degradation mechanisms
Upon loading, a composite or laminate which consists of a brittle matrix supported

by a stronger material usually forms a pattern of multiple cracking. In fiber-reinforced
systems and layered architectures, matrix cracking is usually accompanied by interfacial
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debonding and sliding. At high values ofstress, fiber breakage occurs which is accompanied
by fiber pull-out and is mainly driven by the normal stresses or strains in the fiber directions
(Hild et al., 1994). These two mechanisms need different treatments.

Since the matrix cracking process occurs at load levels significantly lower than the
fiber breakage mechanism, it is assumed that these mechanisms are uncoupled. The matrix
cracks which normally occur at low values of stress are usually aligned with the principal
stress or strain directions. Tbese cracks cause stiffness reduction when the stress is tensile.
In addition, it is the closure of the cracks which indicates the onset of increased stiffness
when the specimen is subsequently loaded in compression. To be able to predict crack
closure, the most natural choice of variable is the crack opening displacement ~.

Debonding foUowed by sliding gives rilie to inelastic strains and hysteresis loops. To
model these phenomena, different models have been proposed (Cox, 1952; Aveston et al.,
1971 ; Hutchinson and Jensen, 1990; Hsueh, 1993). They all use an elementary cell oflength
2L, characterizing the average crack spacing, and consisting of two different materials (1)
and (2), as shown in Fig. 1. There is a crack of size 2a at the center and a friction length
2/F• Thermal mismatch between parts (1) and (2) develops during processing. The self­
balanced residual stress field is - PIEdE and - P2E2/E in parts (1) and (2), respectively
(Fig. 2), where E is Young's modulus of the unbroken composite, E. that of part (1) and
E2 that of part (2). When a crack appears, part of these residual stresses are relieved within
the slipping region.

2.2. State potential
The model can describe the reduction in stiffness due to matrix cracking, the inelastic

strains due to friction, the size of the hysteresis loops and the closure phenomenon when
the loading is compressive. The details of the unloading and reloading process are fairly
complex, but the introduction of the crack opening displacement ~ simplifies the calcu­
lations. To characterize the state of the composite, four different quantities are required.
These are the overall strain 1l, the friction length 2/F, the ceUlength 2L and the crack opening
displacement ~. The expression of the strain distribution in the friction zone in part (2) is
defined by a function F which depends on the details of the interfacial behavior, and is
given by 1562(Z) = ~62F(z), the difference between the strain field when friction occurs and
the strain field with no friction, where z is the direction normal to the crack (Fig. 1). The
crack opening displacement due to slip ~s is then given by

(1)

with

z

x

t
I I
I I
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•
Fig. I. Elementary cell of size 2L x 2W containing a crack of size 2a. A friction zone is characterized

by a length 2/F•
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Fig. 2. Motion of the unbroken part (2) with respect to the broken part (I) with no external load
by an amount ~ over a length IF' Axial stresses in layers (\) and (2) with a constant shear strength.

1 rlF

P = I; Jo F(z) dz,

wheref is the volume fraction of part (1).
The free energy density for a given state is calculated by performing two elastic

calculations. Two "cut and paste" steps are used to evaluate the elastic energies following
approaches introduced by Volterra (1907), and used to analyse the elastic behavior of
homogeneous and isotropic media by considering the elastic properties of a cut cylinder
(Volterra, 1907; Love, 1927), as well as inclusions in an infinite medium (Eshelby, 1957),
or to study creeping materials (Cocks and Leckie, 1987). The first step consists ofcalculating
the elastic energy when the unbroken part (2) is moved with respect to the broken part (1)
by an amount .1, over a length IF (Fig. 2) with no external load. This displacement .1, gives
rise to a self-balanced stress field along a length IF in parts (1) and (2). By integration over
IF, and averaging over the total length L, the elastic energy density associated with this
process is given by (see Appendix):

with

./, = .1; fE, (1-f)E2 !...
'l', 2LIF E p' (2)

The crack opening displacement .1, induces an overall inelastic strain IX due to slip, expressed
as
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(3)

The second step consists of an elastic loading of a cracked system with friction prevented.
The presence of a crack results in a stiffness reduction defined by an internal damage
variable D (Budiansky and O'Connell, 1976; Chaboche, 1982), so that the elastic energy
density is given by

(4)

This damage variable D depends upon the crack density na2/4L W, as well as the elastic
properties of the two components. In the following treatment, the exact microscopic descrip­
tion is not needed. The total free energy density is the sum of the two components ofenergy.
For convenience the free energy can be expressed in a more compact form by using four
state variables, which are the total strain II and three internal variables, namely the damage
variable D modeling the loss ofstiffness due to the cracking mechanism, the damage variable
d =IE tI(1-f)EzlF / L which defines the size of the slip zone related to the crack spacing,
and the inelastic strain IX due to slip. The free energy density in terms of the new internal
variables is

(5)

with

Jl
E*=E-,p2

The crack opening strain IX is similar to a kinematic hardening variable, since eqn (3) shows
that the opening displacement as can be related to the inelastic strain, and the associated
force corresponds to the back-stress induced by the slipping mechanism. The forces associ­
ated with the previous variables are respectively given by

0'"~ = - = E(l-D)(e-IX)oe

0'" E 2y= --=-(e-IX)
oD 2

0'" E*(1X)2y= --=- -
od 2 d

0'" IXx=-= -~+E*-
OIX d'

(6a)

(6b)

(6c)

(6d)

Equation (6a) can be rewritten in terms of a total crack opening which consists of the
contribution of the elastic opening augmented by the opening due to slip

~ ~D

e- E= E(1-D) +IX,

so that the crack closure condition is given by

(7a)
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(jD
E(1- D) + IX = O.
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(7b)

Lastly, the growth laws of the internal variables can be established from the results of
materials science, but these in themselves can be major undertakings, as is evidenced by the
work of Curtin (1991) describing the fragmentation process in a model where constant
shear stress along the interface is assumed. This analysis requires substantial information
about the statistical failure properties of part (1). Another method which is more practical
and in keeping with the aim ofthis approach is to deduce the evolution of the state variables
from experimental data.

2.3. Evolution laws
When deriving the expressions for the elastic energy it was not necessary to have

precise information about the conditions of slip and/or debond properties of the fiber­
matrix interface. To proceed further it is necessary to have information about the interface
and in the following it is assumed that the stress of the interface has a constant value r,
over the friction length IF' It can be shown that &2 = fr/(1-f)E2, F(z) = (/F-z)/a, so that
P= IF/2a, F = 1~/3a2 and E* = 4E/3.

It will be demonstrated that the evolution laws can be deduced from the measurements
during a loading-unloading-reloading sequence. Reversed motion of fibers relative to the
matrix has been studied by numerous authors (Marshall and Oliver, 1987; McMeeking
and Evans, 1990; Pryce and Smith, 1992). The main results are now summarized. After
reaching a maximum stress value lTM, when the maximum friction length is IFM, the load is
reversed (Fig. 3). Upon unloading by blTu, in the range 0 ~ Izi ~ IFU , where IFU is the
unloading friction length, both the relative sliding direction and the frictional shear stress
reverse. Between IFU ~ Izi ~ IFM, the shear stress remains unchanged from that prevailing
during the loading process. After reaching a minimum value of stress when blTu = lTm, the
load is reversed again (Fig. 3), causing reloading. Upon reloading by blTR, sliding is confined
to 0 ~ Izi ~ IFR • The expression for total strain is

(8a)

and the crack opening displacement due to slip during the sequence is given by

PM

__1- - (2)

}
(

Matrix
Crack--

-

t

Slip No Slip (

(2) \

Fig. 3. Depiction of the friction length, IF upon loading, the unloading friction length, IFU' and the
reloading friction length, IFR .

SAS 33-8-J
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(8b)

The crack opening displacement Lls is also related to the total strain by

(9)

For a cracked system, a loss of stiffness is involved. The effect of this change of Young's
modulus can also be interpreted in terms of effective stress (Rabotnov, 1963; Lemaitre and
Chaboche, 1978). The microscopic or "effective" stress, (1 = O"/(1-D), is higher than the
macroscopic stress if because of the presence ofa crack. Therefore, the stress-strain relation­
ship becomes

t-a = E(1-D)' (10)

Equation (10) is consistent with eqn (6a). Upon loading, the evolution of the irreversible
strain a is given by

dtJM -PI(1-D)
a=2 E(1-D)

(lla)

The variation of a, Joe = a-ao, with respect to minimum or maximum value, ao (cor­
responding to a maximum loading or minimum unloading level characterized by 0"0) is
related to the stress variation, Jif = 0" - 0"0, by

d ~~2 ._

Ja = 4E(1- D)[tJ
M

-PI (1- D)] SIgn (15(1). (11b)

Instead of tracking the complicated pattern of friction and reverse friction, it is found to
be convenient to introduce the opening strain into the calculations.

The expression of the maximum hysteresis loop width, Je, is given by

(12)

Equation (12) shows the role of residual stresses on the evolution of the maximum hysteresis
loop width. When the residual stresses vanish, a simple relationship exists between the
inelastic strain and the maximum hysteresis loop width (Fig. 4) :

(jMt----------....".~

--f-~--------_+--e

Fig. 4. Stress. it, versus strain, £, during a loading-unloading-reloading sequence.
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where ein is equal to IX when Urn = O. When Urn = 0, the inelastic strains are given by

1215

(13)

(14)

and the macroscopic closure stress, reached when U = uc, is given by solving eqn (7b) :

(15)

Equation (15) defines the role of the residual stress field but as the damage parameter D
increases, the effect of the initial residual stress field becomes less important. Furthermore,
when the damage parameter d is very small (i.e. 1" is large), the closure condition is given
by Uc ~ 0, and the elastic strains are small as well (therefore ec ~ 0).

Equations (11 )-(15) are only valid when saturation is not reached. Beyond that point,
these evolution laws need to be altered in order to account for matrix cracking saturation
(L = IF)' Lastly, a means of determining the variable D is to measure the initial unloading
modulus, which is equal to E = £(l- D). Similarly, the initial reloading modulus is equal
to E = £(1- D), as shown in Fig. 4.

2.4. Identification from macroscopic quantities
By using eqn (6a) and the definitions of the internal variables, it is possible to measure

some of the internal variables macroscopically. To get the necessary additional information,
a complete loading-unloading-reloading sequence is needed. The useful information is the
maximum applied strain eM, the inelastic strain corresponding to a complete unloading ein,

the maximum hysteresis loop width be and the macroscopic Young's modulus £ = £(1- 15)
shown in Fig. 4. Three state variables, eM, ein and 15, can be used in a phenomenological
model where it is assumed that the unloading process is linear (Fig. 4). The expression of
the corresponding state potential iit is written as (Lemaitre and Chaboche, 1985)

(16)

The stress is obtained by partial differentiation of ifr with respect to the total strain e:

(17a)

and the forces associated with the inelastic strain em = IX(U = 0), and with the macroscopic
damage 15. are respectively given by

(17b)

(17c)

Within the framework of Continuum Damage Mechanics, f is the strain energy release
rate density (Chaboche, 1978). In this study, the evolution of the two internal variables ein

and 15 is obtained from experiments by plotting their evolution against the respective
associated forces, which are assumed to be the driving forces. The measurement of the
inelastic strains is easy to carry out since it involves complete unloading. The measurement
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of the damage variable can be performed through the measurement of the unloading
modulus E = E(l-D).

In this approach the internal variables are obtained from macroscopic measurements.
Since the residual stresses are unknown but constant, additional information is needed to
evaluate them, i.e. the maximum hysteresis loop width <5e. From the knowledge of the four
previous quantities, the expressions for the damage variables are given by

d J (Sin + 2<5s)<5s
4 - SM -Sin -2<5s

and the residual stress in part (l) is

(18a)

(18b)

(18c)

200

100

Equations (18) allow us to quantify the microscopic variables by using macroscopicquan­
tities. To complete the evolution laws, the driving forces need to be known. For the damage
variable D, the natural driving force is its associated force Y. The role played by Y is similar
to that played by the energy release rate '§ in Linear Elastic Fracture Mechanics. Similarly,
the driving force of the damage variable d is assumed to be its associated force y. Lastly,
the force X associated with the inelastic strain can be its driving force. However, eqns (II)
show that the macroscopic stress can also be taken and therefore will be chosen for the
sake of simplicity.

In the following the previous results are applied to a layered material. It is, however,
worth noting that these results can also be applied to fiber-reinforced systems. The definition
of the damage variables and the opening strain may change slightly, but the essential
features obtained in this paper are identical. In particular, the method of deriving the free
energy density through two elastic steps can be conserved.

3. ANALYSIS OF EXPERIMENTS ON A LAYERED MATERIAL

The previous model will be used to predict the behavior of a layered material subject
to tension. The material is constructed by alternating three alumina plates and two unidi­
rectional carbon/epoxy prepreg tapes. The laminate is put in a Kapton vacuum bag at
room temperatme, then hot pressed at a moderate pressure of 350 kPa and at a temperature
of 135°C for 90 min (Lange et al., 1992; Sherman, 1992). The tensile stress-strain response
is shown in Fig. 5. Because of the discrete process of matrix cracking, there are stress drops
at each new break.

400

~ 300 f- .

til
til

~
CZl

o
o 0.003 0.006 0.009 0.012

Strain
Fig. 5. Experimental stress-strain curve of a layered material subject to tension [after

Sherman (1992)].
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Fig. 6. Experimental and fitted evolution of the macroscopic damage variable as a function of strain
energy release rate density.

This first part of the identification used macroscopic data only. The evolution of the
macroscopic damage 15 and the inelastic strains ~in are plotted against their respective
associated forces, Y and iJ. The evol1iltion of the macroscopic damage 15 against the
associated force Y is shown in Fig. 6.. The damage variable saturates so that a convenient
way of describing this growth law is the exponential form

(19)

The parameter 1500 corresponds to the saturation value of the macroscopic damage fj and
f( is a normalizing strain energy release rate density. For this particular system the following
values are obtained :

15X) = 0.79±0.01

f( = 0.21 ±0.02 (20)

Figure 7 shows the evolution of the inelastic strain as a function of the applied stress iJ. A
third order polynomial describes well the experimental measurements

(21)

with

.~ 0.0012
tl
(J')

.g 0.0008
~

~.... 0.0004

O.........................................................~............~..........................................
100 150 200 250 300 350 400 450

Stress (MPa)
Fig. 7. Experimental and fitted evolution of the inelastic strain as a function of stress.
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So = -0.003 ±O.OOI

8 1 = 21 ±6GPa

8 2 = 2.4±0.4GPa

8 3 = 1.7±0.2GPa. (22)

The agreement between experiments and identification is good in terms of stress-strain
response as well. The identifications performed in this subsection constitute the basis of the
identification of the microscopic model. So far, the identification consists of choosing the
type of function describing the experiments, and of fitting the parameters of each function.

In the following, the evolution laws of the microscopic quantities, namely the damage
measures of d and D, the inelastic strain IX and the residual stress - PI will be determined.
The residual stress is important since it defines the onset of the first matrix crack in a
composite system (Budiansky et al., 1986). The first step is to compute the residual stress
-Pl' By using eqn (18c), and the experimental data concerning llM, Bin and the maximum
hysteresis loop width, bll, the residual stress - PI can be calculated at each experimental
data point. It is found that the value of - PI varies, and since the residual stress is constant,
the average for - PI is identified to be a tensile stress of + 18 MPa (Le. a residual stress of
the order of 25 MPa). This value is consistent with independent observations by removing
one alumina layer that fOllnd a tensile residual stress of the order of 20 MPa in the alumina
layer (Sherman, 1992). It is worth remembering th.at the basis of identification of the
residual stresses is such that saturation is not observed macroscopically (i.e. the damage
variable still increases).

Since 15 and !lin are easy to measure, these measurements will be used to establish their
evolution laws as a fit of those experimental data. By using eqn (18c), the evolution law of
the maximum hysteresis loop width, be, is then completely known and given by

(23)

Figure 8 shows the comparison between the experiments and the predictions; the agreement
is good. These results are compared with those obtained when residual stresses are assumed
to be negligible and correspond to the dashed lines in Fig. 8. In that case, eqn (13) applies
and leads to an overestimate of the maximum hysteresis loop width. The knowledge of the
parameter - PI is therefore crucial to the evolution of the maximum hysteresis loop width
and the inelastic strain.

The values of the damage variables can be determined by using eqns (ISa, b). Mea­
suring the initial unloading Young's modulus gives directly the value of D, which can be
compared with the prediction. Figure 9 shows the comparison between the experiments

• Experiments
--Predictions (-PI "# 0) Ir---r~........"

- - - - - Predictions (-PI = 0)

:a
~ 0.0004

§'
j 0.0003
.~

~ 0.0002

~El 0.0001

.~ 0 ~~---L-~~~~---L-~-----..J
~ 0 0.0002 0.0004 0.0006 0.0008

Inelastic Strain
Fig. 8. Experimental and predicted evolution of the maximum hysteresis loop width as a function

of inelastic strain, when - PI = 0 MPa lind - PI = 18 MPa.
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Fig. 9. Experimental and predicted evolution of the damage variable D as a function of strain energy
release rate density Y, when - PI = 0 MPa and - P, = 18 MPa.

and the predictions; the agreement is very good. These results are again compared to those
obtained when the residual stresses can be neglected. In this case there is a slight change in
the initial unloading Young's modulus, measured by the damage variable D; this change
disappears as D increases. The residual stresses have a weak effect on the damage variable
D, modeling the change of stiffness due to matrix cracks. Unfortunately, there is no
direct way of comparing the damage variable d obtairted experimentally and numerically.
Equation (15) shows that the knowledge of the damage variable d is crucial to compute the
crack closure stress, as well as the saturation condition (L = IF)'

4. CONCLUSIONS

A micromechanical model is derived to describe loading and unloading sequences.
These sequences induce slip and reverse slip. Because of friction, permanent strains appear
upon complete unloading. Moreover, hysteresis loops are observed upon unloading and
reloading. These hysteresis loops characterize the amount ofenergy that is dissipated during
one unloading-reloading cycle. A convenient means of characterizing the sequences is to
introduce the crack opening displacement between broken and unbroken parts.

A model based upon microscopic variables is formulated within a framework of
Continuum Damage Mechanics. This model uses four state variables, one observable
variable, i.e. the total strain, and three internal variables, namely two damage variables on
a microscopic level which are matrix cracking and interface debonding, and crack opening
strains proportional to the opening displacement due to slip divided by the average crack
spacing. The free energy can be calculated in terms of these state variables, from which the
associated forces can be derived. The identification procedure to determine the evolution
laws uses measurements obtained from loading-unloading-reloading sequences. The
macroscopic damage, inelastic strain and maximum hysteresis loop width, used in the
identification procedure, are easy to measure experimentally. These quantities can also be
used to calculate the residual stresses.

The procedures were applied to experiments performed on an alumina-carbonjepoxy
prepreg layered material. The predictions in terms of hysteresis loop width and initial
unloading Young's modulus agree well with the experiments. It is shown that the residual
stress field has a strong influence on the evolution of the inelastic strains and the maximum
hysteresis loop width. On the other hand, the evolution of the initial unloading Young's
modulus is weakly affected by the residual stress field. This model was able to capture all
the details of the microscopic study with only three internal variables.

This model will constitute the basis of a constitutive law applied to ceramic-matrix
composites subject to complex loading conditions. In particular, the knowledge of the free
energy density, the internal variables and their associated forces are crucial. These laws
need to be generalized under more complex loading conditions.
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APPENDIX

To compute the elastic energy due to slip with no external stress, one needs to compute the strain contribution
of the opening displacement due to sup 11, in parts (1) and (2) over a slip length IF :

{

- (1-f)E, Eir.,F(z) if 0 < z < IF
bE, (z) = fE, 0

if IF < z < L

1J { 1JE2F (Z) if 0 < z < IF
E,(Z) = 0 if IF < z < L.

The opening displacement due to slip 11, can be related to the previous quantities by

rl
, E1JE,

11, = 10 (1JE,(z)-EiE,(z))dz = fE, IFE.

The overall inelastic strain due to slip is given by the average displacement of the unbroken layer (2) :

I r', I
D! = z10 1JE,(z)dz = £&,E

and the corresponding elastic energy is written as

I r", 2 E&~/F IF (1-f)E, ,..
t/J, =z 10 ,[fE ,&,(z)+(I-f)E2&,(z)]dz =-2-L~r.

(A2)

(A3)

(A4)


